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Abstract

Recent technological advances have made it possible for many studies to collect high dimensional

data (HDD) longitudinally, for example images collected during different scanning sessions. Such

studies may yield temporal changes of selected features that, when incorporated with machine

learning methods, are able to predict disease status or responses to a therapeutic treatment.

Support vector machine (SVM) techniques are robust and effective tools well-suited for the

classification and prediction of HDD. However, current SVM methods for HDD analysis typically

consider cross-sectional data collected during one time period or session (e.g. baseline). We

propose a novel support vector classifier (SVC) for longitudinal HDD that allows simultaneous

estimation of the SVM separating hyperplane parameters and temporal trend parameters, which

determine the optimal means to combine the longitudinal data for classification and prediction.

Our approach is based on an augmented reproducing kernel function and uses quadratic

programming for optimization. We demonstrate the use and potential advantages of our proposed

methodology using a simulation study and a data example from the Alzheimer’s disease

Neuroimaging Initiative. The results indicate that our proposed method leverages the additional

longitudinal information to achieve higher accuracy than methods using only cross-sectional data

and methods that combine longitudinal data by naively expanding the feature space.
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1 Introduction

Current biomedical technology enables the collection of high-dimensional data (HDD) to

gain insights regarding genomic, proteomic, and in vivo neural processing properties.

Moreover, such HDD are more commonly being collected longitudinally, potentially

revealing changes in biological properties that may provide clues to disease diagnosis,

progression, or recovery. Machine learning tools have been widely applied for HDD

classification and prediction (Mitchell et al., 2004; LaConte et al., 2005 Chen et al., 2007).

Support vector machine methods are among the most popular machine learning techniques

due to their high prediction accuracy and robustness (Vapnik, 1998; Mourao et al., 2005;Fu

et al., 2008; Craddock et al., 2009). However, most current machine learning methods have

been developed for cross-sectional rather than longitudinal high-dimensional data (LHDD)

analysis. The ”ideal” methodology for LHDD would take advantage of the additional data to

determine temporal trends of features and use them as inputs within machine learning
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models. However, in practice the temporal trends are usually unknown, and currently no

such model exists for simultaneously determining the temporal trends and building the

classification model.

To address classification or prediction objectives in context of LHDD, one may opt to use

data from only a single time point, e.g. baseline data. Another potential approach for

handling LHDD is a naive procedure of simply combining the longitudinal data as

independent sources of information. Using data from only a single time point or using

longitudinal data as independent sources of information may lead to substantial information

loss and may not fully capitalize on the available data. One may also consider fitting

preliminary models, for example, using logistic regression for each feature, and then using

the resulting estimates to preset the temporal trends for classification. Since this approach

uses classification outcome of interest in the preliminary modeling stage, presetting

temporal parameters for each feature using model based estimates would lead to the vast

danger of overfitting and pose difficulty for the following feature selection procedure.

In this paper, we propose a novel support vector classifier (SVC) for LHDD that extracts

key features of each cross-sectional component as well as temporal trends between these

components for the purpose of classification and prediction. The objective function of our

new method incorporates two groups of estimands: the decision hyperplane function

parameters and the temporal trend parameters that determine an optimal way to combine the

longitudinal data. The objective function is derived from maximizing the margin width, with

error-tolerated correct classification constraints. Within the framework of the Lagrange

(Wolfe) dual of the objective function, we augment the dimension of the Hessian matrix by

incorporating the temporal trend parameters. Then, we apply quadratic programming

techniques to optimize the classification parameters and temporal trend parameters. With the

kernels satisfying Mercer’s conditions, the objective function is convex, leading to a finite

dimensional representation of the decision function. The framework allows feature selection

with unknown temporal trend parameters through recursive feature elimination (RFE)

procedures.

Generally, our proposed framework is applicable to any type of high dimensional data that

are measured longitudinally. For example, in the application to neuroimaging data, our

method is applicable to longitudinal/multi-session studies collecting fMRI, PET, EEG, and

MEG data. The longitudinal property refers to multiple scanning sessions (e.g. images or

collections of images acquired on different days). Importantly, for some neuroimaging data

(e.g. fMRI data), there may be a series of images measured at different time points within

one session. Therefore, we usually use features reflecting various summaries from the

original data at each session. For example, the features in our method may include

functional connectivity, localized activity summary statistics (first level analysis results for

fMRI data), or frequency domain summary statistics. Hence with appropriate summary

statistics, our approach can handle a range of high-dimensional data modalities.

The rest of the paper is organized as follows. In Section 2, we present the new longitudinal

SVC and provide an accompanying computational strategy. Furthermore, we discuss its

extension to nonlinear kernels and RFE based feature selection algorithm. In Section 3, we
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examine the classification performance of the proposed method for a data example and in a

stimulation study. Section 4 concludes the paper with a summary and a discussion of the

major strengths of our novel SVC for LHDD.

2 Methods

2.1 Classical Support Vector Classifier

SVC is a popular kernel machine learning algorithm that is derived to solve classification

problems (Vapnik, 1996). For one subject indexed by s, the p dimensional feature space is

denoted as xs ∈ Rp, for s = 1, 2…, N and group indicators ys ∈ {−1, 1} denote a binary state

such as disease status (positive/negative) or treatment response (recovery or not). A

classifier is defined by constructing a separating function (or hyperplane) h(xs) = w · xs + b

and then generating ŷi = sign(h(xs)), if the data are linearly separable. The SVC chooses the

unique hyperplane that maximizes the margins, which are the distances between the

hyperplane and the support vectors. For cases when data are not linearly separable, a ’soft

margin’ is introduced that allows some data points to be misclassified. Therefore, the SVC is

subject to optimize the following objective function:

(2.1)

subject to

where ξs is the distance of the subject s from its correct side of the margin and the constraint

constant C is the tuning parameter regarding the tolerance level of misclassification.

Then, we obtain the Lagrange (Wolfe) dual by substituting  to the

Lagrange primal function of formula 2.1.

(2.2)

subject to

where  means that we first map data into a higher dimension

through the function Φ(.), then take the inner product of the mapped vectors. The formula

2.2 could be expressed as:
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(2.3)

where , G is a Gram matrix (N × N) satisfying the Mercer’s condition (requiring G is at least

semi positive definite) multiplied by corresponding group labels, α is a 1 by N vector of

estimands. Gs,s′ is . Then, the ’Wolfe’ dual is well suited for quadratic

programming (QP) optimization programs in most software. The objective function in

formula (2.3) can be also considered as the sum of penalty and loss functions in terms of

reproducing kernel Hilbert space with  (Wahba, 1990;

Hastie and Tibshirani, 1990). Once the separating hyperplane has been determined through

quadratic programming optimization, the class label of a new observation xnew can be

determined by the sign function of .

2.2 Longitudinal Support Vector Classifier - LSVC

Consider longitudinal data collected from N subjects at T measurement occasions or

scanning sessions, with p features quantified during each session. The expanded feature

matrix is then T N by p. Let xs,t be used to represent the features collected for one subject s

at time t. Hence, our aim is to classify each individual x̃s = {xs,1, xs,2 , …, x s,T}′ to a certain

group ys ∈ {−1, 1}. We characterize linear trends of change: xs = xs,1 + β1xs,2 + β2xs,3… +

βT −1xs,T , with unknown parameter vector β = (1, β1, β2, …, βT −1)′. The trend information is

desired as inputs of the SVC. A key challenge that we address is how to jointly estimate the

parameter vectors β and α. We propose a novel longitudinal support vector classifier

(LSVC) that jointly estimates the separating hyperplane parameters and the temporal trend

parameters using quadratic programming. We present our approach using a simple linear

kernel, but the ideas naturally extend to other kernel functions.

Let X̃
m = [X̃

t=1, X̃
t=2, …, X̃

t=T ]′ be a p by T N matrix, with components X̃
t=k = (y1x 1,t=k ,

y2x 2,t=k , …, yN x N,t=k) representing data from N subjects each with p features. The

corresponding βm is a T N by N matrix.

(2.4)

with

and 
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Then, we denote wnv as the estimate of separating hyperplane parameter in the classical SVC

with inputs in the form of xs = xs,1 + β1xs,2 + β2xs,3… + βT −1xs,T . The primal objective

function becomes

(2.5)

Similarly, with substituting , we can reparameterize the

Langrange (Wolfe) dual function as:

(2.6)

with subject to

In this way, the model augments the dimension of Gm to T N by T N and the augmented

kernel is ensured to be semi-positive definite. After αm is determined, the separating

hyperplane parameter becomes

(2.7)

Defining the 1 × T vector αm,s = (αm(s), αm(s + N), …, αm(s + (T − 1)N)) we then have

. In either case, we can notice that

After obtaining wnv , we have , in which βm can be

estimated based on αm. Hence, the separating hyperplane is

(2.8)

The subjects with all αm > 0 are considered as support vectors. Therefore, this method is

different from directly applying SVC after stacking up the features at different times as
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independent features. In fact, this naive expansion of the feature space is a special case of

LSVC with all β = 1.

Besides estimating α and β vectors from αm, we can alternatively employ an iterative

procedure to estimate α and β with respect to an objective function of 2.6. The algorithm

will take T quadratic programming steps for each iteration. We rewrite the first part of the

objective function in 2.6 as:

(2.9)

where we denote

(2.10)

For example,  is the submatrix in the left top corner of the matrix Gm for the

baseline data .

Since the sum of convex functions is still convex, we only need to prove that the objective

function in 2.9 is convex with respect to α and β. We relegate the proof of convexity to the

appendix. The convexity guarantees that the local minimum is also the global minimum and

the solution for that minimum is unique. The algorithm is described as follows: (1) we start

with initial values of β and use QP to optimize 2.9 to obtain α ; (2) use the updated α

obtained in step 1 and apply QP again to estimate β; (3) repeat the above two steps until

convergence. The uniqueness of the solution leads to the convergence of the iterative

algorithm.

2.3 Nonlinear Kernel Functions

Although the above derivations are considered in context of a linear kernel, it is natural to

extend to nonlinear kernels. First, we can denote

(2.11)

and we have < βK(·, xs̃,t), K(·, x̃s′,t) >= βK(x̃s,t, , x̃ s′ ,t), where K(·, x̃s,t) indicates the

reproducing kernel map of x̃s,t. Therefore, the temporal trend is taken on the reproducing

kernel mapped space which may be a set of nonlinear transformations of x̃s,t, say K(·,

x̃s,t=0)+βK(·,x̃s,t=1)..,+βT − 1K(·,x̃s,t=T − 1).

Thus, the reproducing kernel function of separating hyperplane becomes
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(2.12)

where b is obtained by . In this way, the

temporal trend parameter vector’s length is increased in accordance with the dimension of

features mapped. Hence, it also could be considered to estimate nonlinear temporal trends of

the original features.

2.4 Feature Selection and Parameter Tuning

Feature selection is a critical step in supervised learning, as it can reduce the dimensionality

of the feature space, leading to increased robustness, improved stability of the classifier, and

reduced computational load. However, for longitudinal HDD feature selection based

on ’filtering’ may not be applicable because elements of β are unknown and thus no

statistical test can be conducted for each feature. Nevertheless, ’wrapper’ procedures such as

SVC based recursive feature elimination (RFE) algorithm is valid under our new LSVC

model. The SVC-RFE algorithm was first proposed by Guyon et al., 2003, and it ranks all

the features according to a classifier based weight function and eliminates one or more

features with the lowest weights. This process is repeated until the minimal set of features

achieve high classification accuracy. For a linear SVC, the weights are simply summarized

from the p × 1 vector w . For non-linear kernel SVC, the rank of a feature is determined by

the impact that its removal has on the variation of Iw I2. In context of longitudinal HDD, the

rank is determined by:

(2.13)

where  are the estimates and inputs without feature or features ν.

In addition, the tuning parameters such as cost C are also important, as they can affect the

estimate of separating hyperplane parameters as well as temporal trend parameters. If we

consider C as the level of shrinkage, and large C corresponds to light regularization and

small C stands for heavy regularization. Therefore, we can use the SVC path algorithm by

starting with large C (low regularization) and increase it gradually, and observe the path of

shrinkage in terms of αm(C) (Hastie and Tibshirani, 2004). This process will provide insight

concerning the bias and variance trade off. For LSVC, we can utilize this shrinkage path

algorithm to better estimate the temporal trend parameters.

3 Results

We investigate the performance of the proposed method by using simulation data and by

using data from a longitudinal neuroimaging study.

Chen and Bowman Page 7

Stat Anal Data Min. Author manuscript; available in PMC 2014 October 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3.1 Simulation study

To evaluate the performance of our proposed LSVC, we generate longitudinal data for 200

subjects and evenly divide them into two groups. Data for each subject includes p = 100

features at two time points (T = 2). We generate a group label ys ∈ {−1, 1} and features xs

for each subject. We also use a binary variable z to determine the baseline feature expression

level, e.g. if zs = 1 then xs = 1 otherwise xs = 0. Within each group, half of of the subjects

have zs = 1 at the lowest level of separability of the baseline data. If zs = ys, the baseline data

are 100% separable. We then set up the temporal change variable Δ that depends on the

group label y by letting Δs = 1, if ys = 1, otherwise Δs = 0. Thus, different groups have

different temporal trends. Therefore, the simulation is generated as follows:

and xs,t=2 = xs,t=1 + a · Δ, where a is scalar to denote the magnitude and direction of the

change. In this simulation, we use σ2 = 0.01, τ 2 = 0.001, and a = 1 to generate the data. The

generated data is depicted in Figure 1, with the x -axis indicating the subject number (the

first 100 subjects are in group one, the rest are in group two), and the y -axis indicating the

feature expression level. The three subplots describe baseline, time one, and the temporal

trend.

We test the performance of the model using different parameter and separability conditions.

The variance has little influence on the model if the data are not separable, but separability

definitions do impact the results. Therefore, we consider four methods: SVC based on

baseline data, SVC based on both baseline and time one data stacked and treated as

independent (i.e. no temporal trends), our proposed LSVC, and SVC with a known trend.

We test these methods using separability levels of 50 %, 60 % and 70%. The separability

level between groups could also be considered as a function of the variation between

subjects within each group, where a lower level of separability between groups results from

higher between-subjects (in one group) variation. Also, we run an additional simulation by

introducing different random ”subject” effects upon the features both at baseline and time 1.

The random effects are assumed to have zero mean and variance σ2, 2σ2, and 5σ2 (totally

blurring), and the higher level of noise leads to lower level of SNR ratio. We then evaluate

the performances of the classifiers under different levels of SNR ratios (see table 2). For all

cases, we only consider linear kernels for equitable comparisons. In addition, for the tuning

parameter C there is no closed form estimator though cross validation can be applied to

assist in determining the best-performing value of C from a pre-specified list of values

(Hastie and Tibshirani, 2004). We feel that generating prediction results based on different

levels of C provides a better evaluation of the SVC’s performance when comparing different

models.
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We present the accuracy results (and standard deviation) for each method and for each

simulation setting in Table 1. The results indicate that our LSVC has excellent performance,

which is comparable to the ’oracle’ model with perfect accuracy in our simulation example.

Here, SVC with ’oracle’ represents the SVC as if the temporal trend is known and maximal

information is obtained for LHDD. The traditional SVC performs very poorly across all

simulation settings.

Similarly, Table 2 shows the results for the simulated data with 50% separability and

different levels of noise. When the noise level is low, LSVC performs better than traditional

methods and approximates the ’oracle’ model. When we double the original noise level

considered, i.e. the noise is taken to be 2σ2, the LSVC still performs quite well and shows

marked improvements over the traditional SVC. We also consider a case where the noise

level saturates the signal, specifically 5σ2. Although this case is not likely to arise in

practice, we wanted to evaluate the performance of our method under extreme conditions.

Naturally, the performance of our model declines in this setting, but it still outperforms the

conventional SVC approaches.

3.2 Data Example

We analyze data from the ADNI database (www.loni.ucla.edu/ADNI), which includes

longitudinal PET scans acquired at baseline, 6 months, and 12 months. We used data from

80 subjects, 40 Alzheimer’s disease (AD) patients and 40 healthy controls, ages 62 to 84.

We used SPM5 for data preprocessing. We illustrate our longitudinal SVC procedure using

PET scans from baseline and 12 months.

We use 1877 voxels within AD relevant regions of interest (ROI) as features, for example

the hippocampus and entorhinal cortex (see Figure 2). Based on voxels within selected

ROIs, we applied our novel longitudinal SVC to discriminate healthy and AD groups. Our

goal here is not to chase perfect classification of accuracy through tuning parameters and

feature selection, rather we demonstrate the usage of the proposed method and compare with

the alternatives. For the validation procedure, we choose leave one out cross-validations. We

tested on the data by using three classification methods SVC: with baseline session only,

SVC with two sessions stacked independently (N by 2p); and the proposed LSVC. Also,

different kernels are used. The results show that the accuracies for the two alternative

methods across all costs are around 50% when polynomial (degree 2, 3, 5, 10) and Gaussian

kernels (with various values of σ) are used. We tune the cost parameter across C = (0.1, 1,

100, 10000). The accuracies are listed in Table 3 based on a leave-one-out cross validation

across all costs. In general the accuracy of LSVC method is 10 to 15 percent higher than the

other two alternative methods.

Overall, based on the simulation study and neuroimaging data analysis, our proposed

method outperforms the traditional methods.

4 Discussion

In this article, we present a novel support vector classifier for LHDD. Our proposed method

estimates decision function parameters and longitudinal parameters simultaneously using
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quadratic programming. The classifier can be extended to any kernel that satisfies Mercer’s

condition, and then the temporal trend is based on the nonlinear transformations of the

original feature space. The SVC-RFE feature selection procedure can also be conducted in

our LSVC, with ranking weight based on the width of the separating margins.

We apply the proposed method to longitudinal neuroimaging data which is a type of LHDD

with temporal and spatial correlation structure. A growing literature has addressed the issue

of temporal and spatial correlation when modeling neuroimaging data as dependent

variables (Bowman et al., 2008, Derado et al., 2010). However, in our model the LHDD

represent independent variables, and the group label for each subject is the dependent

variable, and usually we do not explicitly account for correlations of the predictors. Note

that we model the temporal trend for the LHDD to account for the temporal correlations

introduced by the longitudinal experimental design. For fMRI data, since we use the 1st

level analysis results as features, the scan to scan temporal correlation is considered in the

first level analysis using conventional approaches such as prewhitening or precoloring.

In our data example, we use the biological information to effectively reduce the number of

features from around 300,000 to 1877, rather than performing variable selection empirically.

When such biological information is not present, some supervised methods are applicable.

Based on the results from our simulation study and our data example, the LSVC leverages

the additional information from longitudinal measurements to achieve higher prediction

accuracy. The computational load of our LSVC technique is generally quite manageable,

and on average training a LSVC model of 200 subjects with 100 features takes roughly 14

minutes on a PC with Intel Core2 Duo 2.83G CPU and 4G memory.
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5 Appendix: Proof

Proposition.  is a convex function regarding α and β, where αm = (α, β1α, …,

βT−1α).

Proof. The second order condition of convexity requires the Hessian matrix ∇2f to be

positive semidefinite (p.s.d.). and

. Here first present the case of two time points and extend it to T time points. Therefore,
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where .

Then, the four derivatives are:

Next, we need to prove ∇2f is p.s.d.. For any nonzero vector v of length N and scalar u,

because  is p.s.d..

Similarly for T time points data set, the Hessian matrix

is also p.s.d..

Moreover, the objective functions with nonlinear kernels are also convex if each K̃(X̃
t=k,

X̃
t=k) follows Mercer’s condition and is p.s.d. for k = 1, 2, …, T .
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Figure 1.
Simulated Data Set: (A) Baseline data, (B) Time one data, and (C) Temporal change
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Figure 2.
Voxels in these ROIs are used for analysis
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Table 1

Simulation Classification Results with Different Separability

Cost (C) SVC baseline SVC stack LSVC SVC ”oracle”

50% separable at baseline

0.1 .49 (0.06) .51 (0.04) .99 (0.01) 1(0.0)

1 .52 (0.03) .50 (0.03) 1 (0.00) 1(0.0)

100 .50 (0.02) .53 (0.04) 1 (0.01) 1(0.0)

10000 .53 (0.03) .48 (0.06) .99 (0.03) 1(0.0)

60% separable at baseline

0.1 .57 (0.16) .71 (0.31) 1 (0.0) 1(0.0)

1 .52 (0.23) .75 (0.11) 1 (0.0) 1(0.0)

100 .58 (0.12) .73 (0.14) 1 (0.01) 1(0.0)

10000 .63 (0.08) .72 (0.26) 1 (0.02) 1(0.0)

70% separable at baseline

0.1 .72 (0.13) .83 (0.04) 1 (0.01) 1(0.0)

1 .78 (0.07) .87 (0.03) 1 (0.02) 1(0.0)

100 .73 (0.12) .82 (0.04) 1 (0.02) 1(0.0)

10000 .71 (0.21) .81 (0.06) 1 (0.06) 1(0.0)

Stat Anal Data Min. Author manuscript; available in PMC 2014 October 08.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Chen and Bowman Page 16

Table 2

Simulation Classification Results with Different Noise Level

Cost (C) SVC baseline SVC stack LSVC SVC ”oracle”

Noise: σ2

0.1 .47 (0.13) .54 (0.07) .98 (0.03) 1(0.0)

1 .56 (0.09) .50 (0.12) .99 (0.01) 1(0.0)

100 .51 (0.06) .61 (0.14) .99 (0.01) 1(0.0)

10000 .52 (0.10) .55 (0.08) .99 (0.01) 1(0.0)

Noise: σ22

0.1 .57 (0.16) .55 (0.21) .96 (0.03) 1(0.0)

1 .52 (0.23) .55 (0.14) .96 (0.02) 1(0.0)

100 .48 (0.12) .52 (0.18) .98 (0.01) 1(0.0)

10000 .55 (0.08) .49 (0.21) .97 (0.02) 1(0.0)

Noise: 5σ2

0.1 .48 (0.33) .47 (0.28) .56 (0.22) .73 (0.11)

1 .54 (0.17) .52 (0.23) .61 (0.18) .68 (0.20)

100 .53 (0.22) .51 (0.26) .54 (0.15) .70 (0.17)

10000 .51 (0.24) .49 (0.16) .58 (0.06) .62 (0.13)
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Table 3

ADNI PET Data Classification Results

Cost (C) SVC baseline SVC stack LSVC

0.1 .65 .66 .78

1 .66 .67 .76

100 .65 .67 .75

10000 .66 .66 .75
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